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The concept of "abacus logic" has recently been developed by the author 
(Malhas, n.d.). In this paper the relation of abacus logic to the concept of 
fuzziness is explored. It is shown that if a certain "regularity" condition is met, 
concepts from fuzzy set theory arise naturally within abacus logics. In particular 
it is shown that every abacus logic then has a "pre-Zadeh orthocomplementa- 
tion". It is also shown that it is then possible to associate a fuzzy set with every 
proposition of abacus logic and that the collection of all such sets satisfies 
natural conditions expected in systems of fuzzy logic. Finally, the relevance to 
quantum mechanics is discussed. 

1. W H A T  IS AN ABACUS?  

The aim of  this paper  is to present a rich source o f  examples o f  logics 
akin to quan tum logic and to fuzzy logic. In a textbook on quan tum logic 
(or  quan tum fuzzy logic), the ideas in this paper  would find their rightful 
place not in the main text, but in the examples and exercises. This is not  at 
all bad. The examples and exercises in a textbook help to motivate  the 
discussion and to show that  the ideas in the main text are natural,  useful, 
and that they have applications beyond the original circumstance in which 
they were first conceived. 

The objects under study in this paper  are functions 

where F is a nonempty  set and .~(91) is the set o f  all subsets o f  the real line 
N. I f  F is finite, say F = {a, b, c, d, e}, then we can picture q~ as follows: 
First we draw five parallel copies o f  9l, one for each element o f  F. Next, for 
each i e 1 T, we picture (p(i) as a nonempty  set o f  points on the ith copy o f  
91. It is natural,  in view of  such a picture, to think o f  q)(i) as the set o f  
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Fig. 1. 

"beads" on the ith "rung" of an "abacus" (Figure 1). In fact we shall find 
this intuitive picture useful for our purposes. 

Definition. Any function 

~o. C - ~ ( ~ ) \ { ~ }  

is here called an abacus on F. The elements of F are called the rungs of ~o 
and, for every i s  F, cp(i) is called the set of  beads on the ith rung of q0. 

We shall show that with every "regular" collection of  abaci on a 
nonempty set F we can associate a fuzzy logic called "fuzzy abacus logic" 
and that quantum logic is a special case of such a logic. The idea of 
"abacus logic" was first studied (Malhas, n.d.) without reference to 
pseudonegation or fuzziness. The next section contains a quick review, with 
new examples, of  the idea of an "abacus logic." The last two sections deal 
with fuzziness and application to quantum theory. 

2. ABACUS LOGIC 

Let q~ be an abacus on F and let B be the collection of Borel subsets 
of 9t. For  any E s B, it is either true or false that the beads on the ith rung 
are all within E. That  is, it is either true or false that ~0(i) _ E. 

Let K be a nonempty collection of  abaci on F. With every ~p sK let 
%: F x B--> {0, 1} be given by %(i, E) = 1 iff q~(i) ___E. We can therefore 
think of the pair (i, E) as a symbol representing the English statement 

The beads on the ith rung are all within the Borel set E. 

This statement does not refer to a particular abacus in K. It is true for 
the abacus ~o iff ~p(i) _ E, i.e., iff %(i, E) = 1, otherwise %(i, E) = 0. Note 
that z~(i, E ) = 0  does not mean that z~(i, E ' ) =  1 or, equivalently, that 
(p(i) ~_ E', but merely that ~p(i) ~ E. The elements of F z B shall here be 
called elementary formulas. If %(i, E ) =  1, then we shall say that the 
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elementary formula (i, E) is true on the abacus ~p. For every elementary 
formula u = (i, E) we let K(u) be the set of all abaci in K on which u is true. 

The collection K of abaci determines an equivalence relation ~ K on 
F x B defined by 

( i ,E)  ~ K ( j , G )  iff V~oeK, %(i, E) = ve(~L G) 

The equivalence class of the elementary formula (i, E) shall be called 
a proposition and be denoted by [(i, E)]. Let ~U be the set of all proposi- 
tions. Then V is partially ordered by [(i, E)] --<K [(J, G)] iff V~0eK, 
re(i, E) < r~( j ,  G). The partially ordered set (V, <K) shall be called the 
logic of  K or an abacus logic. Every abacus logic has a first element o and 
a last element i defined as follows: For any rung i, put 

o = [(i, ~)]  and i -- [(i, 9l)] 

It follows that o,i are well defined, o r  and that for every e e l ,  
o < K e -< K i. It is clear that (i, E) ~ ~ ( j, G) iff K(i, E) = K( j, G). In fact, 
we have the following theorem. 

Theorem 2.1. For all elementary formulas u, v e F x B: 
(i) [u] -< K [vl iff K(u) _~ K(v). 

(ii) If  [u] :A [v], then K(u) r K(v). 
(iii) If u = (i, E), then K(i, E') ~_ (K(i, E))'. 

Proof (i) and (ii) are obvious. For (iii) suppose that ~o ~K(i, E'). Then 
%(i, E') = 1. This implies q~(i) ___ E', which implies ~o(i) ~ E, which implies 
re(i, E) = 0, which implies that ~o CK(i, E), which implies rp ~(K(i, E))'  [] 

This theorem is important not only for what it says but also for what 
it does not say. Parts (i) and (ii) say that there is an imbedding of abacus 
logic, a partially ordered set, into the partially ordered set (~(K), ___) of 
subsets of K. Of course (~(K), _~) is also a complemented distributive 
lattice. The theorem does not say that abacus logic is isomorphic to a 
sublattice of (~(K), _) .  the example below shows that even if abacus logic 
is a lattice, it need not be isomorphic to a sublattice of ~(K).  This is neither 
surprising nor profound: Two elements in a subset cg of N(K) need not 
have either a g.l.b, or an 1.u.b. in cg even though their g.l.b, and 1.u.b. exist 
in ~(K). Furthermore, if two elements have an 1.u.b. in rE, then this need 
not be their 1.u.b. in ~(K). In fact, their 1.u.b. in rE will, generally speaking, 
be "above" (i.e., contains) their 1.u.b. in ~(K).  Similarly, if their g.l.b. 
exists in cg, it is "lower than" (i.e., a subset of) their g.l.b, in N(K). Part 
(iii) of the theorem tells us that also K(i, E') cannot be identified with the 
complement in K of K(i, E). 
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Theorem 2.1 also has practical importance when K is finite. For  
example, suppose K has exactly three elements. Then (~(K),  _ )  has the 
famous Hasse diagram of Figure 2. Then regardless of how many rungs 
there are or how the beads are distributed on the various rungs, the abacus 
logic associated with K is isomorphic to a subset of this diagram. To 
construct the Hasse diagram of abacus logic we use part (ii) of Theorem 
2.1. For  every elementary formula (i, E) we search Figure 2 for the element 
which corresponds to K(i, E). The set of all elements that we find in this 
way is the desired abacus logic. 

Example. Now let us show that abacus logic can be a lattice and that 
then it need not be distributive. We shall also illustrate the combinatorial 
arguments that are needed in connection with a finite collection of abaci 
with finite sets of beads on the rungs, these arguments are spelled out in 
tedious detail because the topic is new and one has to learn how to handle 
it. Let K be the collection of abaci, on F = {a, b}, in Figure 3. 

The positions of the beads on rung " a "  are chosen from the set 
A = { - 2 ,  1,2}. Thus for every Borel set E, K ( a , E ) = K ( a ,  Ec~A). We 
also note that K(a, { - 2 ,  2}) = K(a, { - 2 } )  = K(a, { - 2 ,  1}) = {{02}. Also 
K(a, {1}) = K(a, {2}) = K(a, 25) = ~ ,  since there does not exist an abacus 
{0 in the collection for which {0(a) _c {1} or {0(a) ~ {2}. Thus every pair 
(a, E) is equivalent, under ~K to exactly one of the following four pairs: 

(a, ~ ) ,  (a, { - 2 ,  1,2}), (a, { -2}) ,  (a, {1,2}) 

Fig .  2. 

~PJ ~~ 

b t i i i ~ ; : b ~ = ~ I i i 

o ~ ..~ o 

Fig .  3. 

~3 

~ o 3 
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Similarly, for every Borel set E, every pair (b, E) is equivalent, under 
~: to exactly one of the following seven pairs: 

(b, ~ ) ,  (b, { - 1 ,  1}), (b, { - 2 ,  -1}) ,  (b, {1,2, 3}) 

(b, { - 2 ,  -1 ,1}) ,  ( b , { - 1 , 1 , 2 , 3 } ) ,  ( b , { - 2 , - 1 , 1 , 2 , 3 } )  

We also have the following "mixed" equivalences: 

(a, {1, 2}) ~ g  (b, {1, 2, 3}), (a, { -2})  ~i~ (b, { - 2 ,  - 1}), 

(b, ~ )  ~i~ (a, ~ )  

(a, 9~) ~K (a, { - 2 ,  1,2}) ~K(b ,  {- -2 , - -1 ,  1,2,3}) ~K(b,  9~) 

It is sufficient to show how the first equivalence is obtained: For every 
abacus (o in the collection, (p(a) _~ {1, 2} iffcp = (P3 iff ~p(b) ~ {1, 2, 3}. Thus 
the set of all propositions is a set of seven elements: 

o = [(b, ~ ) ] ,  i = [(b, 9~)], [(b, {1, 2, 3})], [(b, { - 2 ,  - 1})] 

[(b, { - q, 1})], [(b, { -  1, 1, 2, 3})], [(b, { - 2 ,  - 1, 1})]. 

It is obvious that for a (fixed) rung i and any Borel sets E, G, we have 
E_~ G implies [(i, E)] -<K [(i, G)]. Thus the Hasse diagram of Figure 4 
represents the corresponding abacus logic. This is a lattice, but not a 
distributive lattice: Try the distributive law with ( ,  v 7) /x 6. [] 

Define pseudonegation to be the operation # :  F x B--+ F • B given 
by #(i ,  E ) =  (i, E'). This operation, which suggests a sort of "negation," 
does not necessarily "behave well" with ~ .  That is, i f  (i, E) ~K (J, G), 
then it does not follow that (i, E') ~K (J, G'). In the last example, take 

), = [( b, (-Z. q, i})] 

= [ (b, (-2, -i ))] 

i 

o 

Fig. 4. 

= [(b, (-1,1,2,3})] 

y= [(b, (1,2,3))] 
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8 : ,  ' ' ~ ' 8 ' ' ' ~ ' a ~ . . . .  
0 0 0 

b �9 s ' ' ' b ' ' ' �9 ' b ' ' ' r ' 
0 0 0 

Fig. 5. 

i = 

[(b, ( - t } ) l  

O 
Fig. 6. 

[(b, { t ) ) l  

(1))1 

E = { - 2, 1 } and G = { - 2, - 1 }. Then (a, E) ~ ~ (b, G). But 
[(a, E')] = [(a, {-1})]  = o, whereas [(b,G')l = (b, {1, 2, 3 } ) # o .  A set K of 
abaci for which pseudo negation "behaves well" with -,~1~ shall be called 
regular. The collection of  Figure 5 is regular. In fact the equivalence classes 
of (a, {1}), (a, { -2}) ,  (b, {1}), (b, { - 1 } )  are distinct. Also we have 
(b, 9l) ~K(b ,  {--1, 1}) ~ ( a ,  {--2, 1}) ,-~K(a, 9t). From these observa- 
tions the regularity of  K easily follows. Abacus logic for this collection has 
the Hasse diagram of Figure 6. 

3. FUZZY ABACUS LOGIC 

As promised in the Introduction, we shall now use the concept of 
abacus to illustrate various aspects of fuzzy logic. From here on we shall be 
concerned only with regular collections of abaci. 

(a) Zadeh posets. If K is regular, then the operation *~: "U ~ ~U given 
by [(i, E)]* = [(i, E')] is well defined. Before proving the next theorem it is 
useful to point out that the condition c~ <K ~*, where ~ = [(i, E)], is 
equivalent to the condition that for all ~0 ~K, if q)(i) _ E, then (p(i) ~ E', 
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which implies that for all q~sK, q~(i) N E or q~(i) _ E' ,  which implies that 
for all ~0 eK, re(i, E) = 0. The e = [(i, E)] = o. 

Theorem 3.1. The operation * is a pre-Zadeh orthocomplementation of 
abacus logic, i.e., for all e , / ? e ~ ,  (i) e**=c~ and (ii) if e < K e *  and 
/?* -<K/~, then c~ <K/~. 

Proof Part (i) is obvious. Part (ii) is trivially true since, by the 
comments preceding the theorem, ~ = o. �9 

To become a Zadeh orthocomplementation, * must also satisfy the 
condition that if c~ --<K/?, then /~* --<K e* (Cattaneo and Nistic6, 1989). 
This, however, need not be satisfied by the abacus logic of a regular 
collection of abaci. Figure 5 depicts a regular collection of abaci. Let 
c~ = [(a, {1})],/? = [(b, {1})]. Then e* = [(a, {1}')] = [(a, {-2})]  and, simi- 
larly, / ~ * = [ ( b , { - 1 } ) ]  and we have c~ --<K/?, but /?* ~K e* ,  as can be 
verified from Figure 6. One can easily construct examples of an abacus 
logic which satisfies if ~ <K/?, then /?* --<K e*. We shall meet one such 
example when we discuss quantum mechanics. The next conjecture is stated 
without further comment. 

Conjecture. Every Zadeh poset in which c~ _<-< K e* implies that e = o is 
an abacus logic. 

(b) Fuzziness. Each English statement, "The beads on the ith rung are 
within E," is essentially a fuzzy statement: The beads on the ith rung of an 
abacus can all be within E or they can all be outside E or they can be partly 
inside E and partly outside E. The function % gives a very coarse estimate 
of the depth of penetration of q)(i) into E: If  (p(i) is entirely within E, then 
re(i, E) = 1. All other degrees of penetration of  q)(i) into E are given degree 
of penetration 0, i.e., if q~(i) ~ E, then re(i, E) = 0. Suppose K is a regular 
collection of abaci with abacus logic ( ~ ,  -< K) and let Pe : ~ ~ [0, 1] be 
such that: 

1. pe[(i, E)] = 1 iff (p(i) _ E and pe[(i, E)] --- 0 iff (p(i) c E' .  
2. pe[(i, E')] = 1 - pe[(i, E)]. 

Such a function exists, e.g., set pe[(i, E)] = 1/2 if neither q0(i)~ E 
nor q~(i)___E'. Then the function c % : F x B ~ [ 0 , 1 ]  given by 
oJe(i, E) = pe[(i, E)] is a finer measure of  the penetration of  q~(i) into E. We 
may call P e a  fuzziness measure. 

For every cr ~ / "  definef~ : K--* [0, 1] by settingf~(cp) = pe(c0. Thenf~ is 
a fuzzy set on K. It has the property that if cr #/~, then f~(~o) ef t (q)) .  
Clearly, fo = 0, the zero function. Let ~ be the collection of all fuzzy sets 
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g on K such that g =f~ for some ~ in ~/~. Then Y has the following 
properties: 

o~- 1. foe@.  
~-2. I f g 6 ~ ,  then 1 - g s ~ .  
Y 3. For all g ~ o ~ ,  g < 1 - g implies g = 0. 

We may call ~ fuzzy abacus logic. If abacus logic is a lattice, then 
"sums" and "products" of elements of ~ are defined and belong to ~,~: 

~,~4. f~ GfB((p ) =f~ ~ ,((p) and f~ | =f~ ^/~((p). 

The result would then be a variation on the concept of a generalized 
quantum logic as defined by Pykacz (1992). 

4. RELEVANCE TO QUANTUM MECHANICS 

With every finite-dimensional Hilbert space ~ over the complex 
numbers we can associate a collection of abaci such that abacus logic is 
isomorphic to the lattice of subspaces of ~r See Malhas (n.d.). 

1. The Rungs. Let F be the set of all self-adjoint operators on Yg. In 
quantum mechanics self-adjoint operators are called observables. The set of 
all rungs is the set of all observables. 

2. The Beads. Let s be a one-dimensional subspace of JtQ In quantum 
mechanics such subspaces are called pure states. Let i be an observable. For  
the purposes of this paper, a set of eigenvalues of i shall be called good for 
s if the subspace spanne d by the corresponding eigenvectors contains s. 
Clearly, the set of all eigenvalues of  i is good for s. The empty set is not 
good for s. The intersection of  any collection of  good sets is also a good 
set. Let ~ ( i )  be the intersection of all sets which are good for s. Thus 
~bs(i ) 4= ~ and, hence, the function (p: F ~ ~(91)\25 defined by ~0(i) = ~b,(i) 
is an abacus. The set of beads on the ith rung is ~b~.(i). Let K be the set of 
all abaci obtained in this way. Thus (p ~K iff (p(i) : ~b,(i) for some state s. 
The next theorem tells us that we can identify pure states with abaci. Thus 
K contains many abaci. 

Theorem 4.1. The correspondence s ~ ~, is 1-1. 

Proof. For every state s let i, be the orthogonal projection onto s. 
Then i~ has a set of two eigenvalues {0, 1}. Let z be a state other than s. It 
easily follows from the definitions of ~b, and ~b~ that ~b_,(i~)= {1}, but 
~b~(i~) ={0} i f s  •  or tp~(iz)= {0,1}. Thus tp, r  �9 

With N there is associated an abacus logic. It remains to show that 
abacus logic, in this case, is regular and that it is isomorphic to the lattice 
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of subspaces of ~gr By definition (see Section 1), for every pure state s, 
zoo(i, E) = 1 iff 0s(i) _~ E. 

For every observable i and EsB ,  let the symbol i(E) denote the 
subspace spanned by the set of all eigenvectors of the eigenvalues of i that 
happened to be in E. 

Theorem 4.2. For every E~B, zc, s(i, E) = 1 iff s ~_ i(E). 

Proof. First suppose s =__ i(E). Then the set of eigenvalues of i that are 
in E is good for s. Thus ~bs(i)~_E and therefore that z o , ( i , E ) =  1. 
Conversely, suppose that z0,(i, E) = 1. Then ~bs(i ) ~_ E. But Os(i) is a set of 
eigenvalues good for s. Hence, s ~_ i(E). �9 

Theorem 4.3. [(i, E)] < K [(J, G)] iff i(E) ~_j(G). 

Proof. By definition, [(i,E)] <K[( j ,G)]  iff, for every state 
s, %,(i, E) -< z ~ ( Z  G) iff zos(i, E) = 1 implies z~,,(Z G) = 1 iff, by the last 
theorem, for every state s, s c__ i(E) implies s ~_j(G) iff i(E) ~_j(G). �9 

Theorem 4.4. K is regular. 

Proof. Using the last theorem, [(i, E] = [(j, G))] iff i ( E ) = j ( G )  iff 
i(E') =j (G ' )  iff [(i, E')] = [(j, G')]. �9 

For every subspace A let PA be the orthogonal projection on A. 

Theorem 4.5. Abacus logic is a lattice isomorphic to the lattice of 
subspaces of -;/f. 

Proof. See Malhas (n.d.). 

Thus we may identify abacus logic with quantum logic. Each proposi- 
tion [(i, E)] may now be called a quantum proposition. Gleason's theorem 
characterizes probability measures on abacus logic. The probability of 
the quantum proposition [(i, E)] in the state s is given by p~[(i,E)] = 
trace(p.~.p~E)). In abacus logic, probability induces a natural fuzziness 
measure. For every pure state s let c%~ : F x B ~ [0, 1] given by c%,(i, E) = 
trace(p~.p~(e~). As in Section 3, the unique fuzzy set (on K) corresponding to 
the quantum proposition c~ = [(i, E)] is f~(O~) = ps(ct) = trace(p,p~(E)). 

NOTE ADDED IN PROOF 

Let Q be the set of all functions f=:K--+[0, l] given by f=(Os) = 
trace(psPi(E) ). Then Q satisfies conditions O~l to Y4 above because the 
underlying set K is regular and because abacus logic, in this case, is a lattice. 

It should, however, be noted that the appropriate partial order relation 
in a system Y of fuzzy sets satisfying ~1 to ~4 is not the "natural" one, 
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f~ -<f, ifff~(~bs) <f,(~bs) for every s, but the partial order relation inher- 
ited from abacus logic (which is now assumed to be a lattice) 

f~ -<f~ iff~ <-1~]~ 

In this way we turn ~ into a lattice in which @ and | are the lattice 
operations of join and meet, respectively. The partial order relation inher- 
ited from abacus logic is the one which is "compatible", in an obvious 
sense, with the lattice operations in abacus logic, and if we define f~  to be 
1 - f ~ ,  then it easily follows that _L is something like an orthocomplementa- 
tion, in fact a pre-Zadeh orthocomplementation. 

In Q, the operation " is an orthocomplementation and Q is an 
orthocomplemented lattice isomorphic to the orthocomplemented lattice of 
subspaces of ~ .  It also turns out that in Q the "natural" partial ordering 
and the abacus logic ordering are the same. 
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